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Abstract

This paper deals with discrete inverse prob-
lem in acoustics. It is assumed that the number
of acoustic sources are located at known spa-
tial positions and that the acoustic velocity is
measured at a number of spatial positions in
the radiated field. The situations will be re-
stricted to steady states and due to the type
of application that is being envisaged only in-
ternal acoustic problems. The Macroelement
Post-Processing recovery technique is based on
residuals of equilibrium equation and irrota-
tionality conditions. The derivatives are recov-
ered by solving local variational problems ex-
ploring special superconvergence behavior oc-
curring in acoustic problems. This finite ele-
ment enhanced formulation is explored in the
context of estimating noise sources. A num-
ber of comprehensive simulation is presented in
order to assess the main features of proposed
formulation.

1 Introduction

Nowadays, numerical modelling plays a cru-
cial role in engineering, specially whether com-
plex systems are involved. It enhances the pre-
diction capability when direct measurements
are not accessible or numerical simulations are
cheaper than carrying out experiments. It also
allows the analysis of critical situations in which
testing becomes prohibiting.

On the other hand, designing engineering
systems using numerical simulations requires
reliable models which, in turn, relies on the
the available data and on assumptions involv-
ing modelling and discretization. The usual
way of improving the situation is adjusting the

model by means of comparing the model results
with information obtained through experiments
or field measurements, which is generically re-
ferred to as model validation.

One important issue involved on model vali-
dation is providing the modelling with reliable
data as, for instance, the identification of noise
sources in acoustic problems, which is the focus
of the present work. Identifying the acoustic
source enables the prediction of sound radia-
tion by means of finite element models which
might serv as a departure point for noise control
design leading to the improvement of acoustic
quality.

Source identification is normally achieved in-
directly as direct measurements are often cum-
bersome. Therefore, the source reconstruction
is phrased as an inverse problem [4] combin-
ing some experimental data, modelling and op-
timization strategies. A inverse formulation
based on finite elements aiming at source iden-
tification is presented here.

Neglecting non-linear effects (convection, ad-
vection), which is justified by the low level of
acoustic pressure p inducing very small pertur-
bations around a steady uniform state in an in-
viscid fluid, the acoustic wave propagation is
described by the Helmolhtz equation [3], e.g.

∇2p + k2p = 0 (1)

with k is the so called wave number defined by

k =
ω

c
(2)

where∇2 stands for the Laplacian operator and
ω and c are, respectively, the circular frequency
and the material’s speed of sound.

In order to have a complete description of the
wave propagation phenomena, it is necessary
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to choose the appropriate boundary conditions,
which in the present context are presented bel-
low

∇p · n = −ikcρAp on ΓR (3)

p = p0 on Γp (4)

where ρ is the mass density, n is the exterior
unit normal vector, i =

√−1 and A is the ad-
mittance coefficient. Moreover, the acoustic ve-
locity vector is defined as

v =
−1

iwρ
∇p (5)

In the identification situation addressed in the
present article, the source is assumed to be
stationary and placed over the portion of the
boundary Γp. It is modelled by p(x, t) =
P0(x)eiwt with w known, therefore the identifi-
cation problem is set as finding the spatial dis-
tribution P0(x) corresponding to the strength
of the source. The identification formulation
involves model output data which is obtained
trough an enhanced finite element formulation,
a crucial issue of the proposed methodology,
outlined later. This finite element formulation
explores superconvergence behavior of in spe-
cial points which will provide extra accuracy
for the identification problem. A similar idea is
used in [7], where elastic parameters of a vis-
coelastic beam are to be identified.

The remainder of this paper is organized as
follows. Section 2 presents the direct problem,
in which the pressure field radiation is com-
puted once the boundary conditions, geometry
and material parameters are known. Its dis-
cretized counterpart is also introduced. Section
3 contains the inverse problem formulation to-
gether with a numerical algorithm to solve the
resulting problem. Section 4 presents a numer-
ical example that is used to assess the perfor-
mance of the proposed formulation. Section 5
is devoted to final remarks.

2 Direct Problem: Weak
formulation of the gover-
ning equation

In order to solve by means of the finite ele-
ment method the interior acoustic problem in-
troduced above, the following variational for-
mulation based on the primal variable p is in-
troduced.

PROBLEM P: Find p ∈ V such that

∫

Ω

∇p.∇q̄ dΩ−k2

∫

Ω

p q̄ dΩ+ikρc

∫

Γp

Ap q̄ dΓ = 0

(6)
∀q ∈ V where the function space of admis-

sible pressure fields V is defined as

V = {p ∈ H1(Ω) | q = 0 on Γp} (7)

where H1(Ω) is the Sobolev space in which
functions and theirs generalized derivatives are
square integrable. Moreover, q̄ stands for the
complex conjugate of q, throughout the rest of
the paper the bar will be omitted in order to
use a simpler notation.

2.1 Finite element discretization

The Galerkin finite element approximation of
the equation (6) is obtained by considering a fi-
nite dimensional spaces Vh ⊂ V , and then seek-
ing an approximate solution to (6). Let Sk

h be
quadrilateral or triangular C0 lagrangian finite
element subspace of H1(Ω) of degree k. The
discrete version of PROBLEM P in Vh = Sk

h∩V
reads

PROBLEM Ph: Find ph ∈ Vh, such that

∫

Ω

∇ph.∇qhdΩ −k2
∫
Ω

ph qhdΩ+

ikρc
∫
Γp

Aph qhdΓ = 0 ∀qh ∈ Vh

(8)

3 Source identification:
the inverse problem

The source identification is phrased as an in-
verse problem in which the unknown strength
distribution is sought. In this type of problem,
this lack of information is somewhat compen-
sated by measuring extra data over a portion of
the domain. In the present work, the adopted
strategy relies on obtaining the acoustic veloc-
ity field over ΓR, for which the admittance co-
efficient is a priori known.

Thus, the identification problem is formu-
lated as finding the distribution P0(x) on ΓR

which furnishes a minimum of the the least
square objective function given by:

J(P0) =

∫

ΓM

(vM − v∗h(P0))
2dΓ (9)



where vM represents the measured velocity field
and v∗(P0) is the one obtained by solving the
direct problem for an assumed value of P0. In-
deed, as the direct problem is addressed by the
finite element method, the source is associate
to a vector of nodal values corresponding to
the discretization of P0. For the sake of com-
pactness, the same notation is adopted for the
sought field and its discrete counterpart.

The minimization problem is subject to the
following restrictions engendered by the equa-
tions corresponding to the direct problem:

∇2ph + k2ph = 0 em Ω
ph(x) = P0(x) x ∈ Γp

∇ph.n = −ikph x ∈ ΓM



 (10)

In order to solve numerically the above mini-
mization problem, it is necessary a reformula-
tion involving the following Lagrangian:

L(P0, λ) =

∫

ΓM

(vM − v∗h(P0))
2dΓ+

∫
Ω

λ.(∇2ph + k2ph)dΩ
(11)

where λ it is the lagrange multiplier responsi-
ble for incorporating the restriction constituted
by the state equations. For obtaining the min-
imum of the functional L, the method of the
gradient [2] will be used. The corresponding it-
erative algorithm is synthesized by its l-ésima
iteration, through the expression:

P0
l+1 = P0

l − αtL
′
(P0

l) (l = 1, ..., n) (12)

where the positive scalar αt is the step size
which is often decisive in the process of con-
vergence of the iterative method and L

′
(P0

l)
represents the gradient of the lagrangian, which
supplies the descent direction, computed in the
point P0

l.

3.1 Model Output vh
∗:

Macroelement Post-
Processing Technique

Broadly speaking, the identification problem
consists on minimizing the least-square differ-
ence between the measured velocity field and
the corresponding model’s output. Often, this
problem is ill conditioned which entails on the
results a high degree of sensitivity to small per-
turbations on the data. Therefore, an accu-
rate approximation of vh

∗ is required, which,

in the present work, is provided by the post-
processing technique described next.

Usually, after solving the Helmholtz equa-
tion, the velocity field is obtained by using a
discrete version of (5). This direct approach
leads to lower-order accuracy for the deriva-
tives when compared to the primal variable
ph. This motivates the development of the of-
ten called recovery strategies, in which a more
accurate approximation of the derivative vari-
able is sought. Here, the macroelement post-
processing technique proposed in [1] is applied
to acoustic problems.

The basic idea of this method is to find a bet-
ter approximation for the derivative (∇p) by
solving on each macroelement, understood as
the union of neighboring elements with common
edges, a local variational problem involving the
residuals of the balance equation, of the irro-
tationality condition and the constitutive rela-
tion at special superconvergence points [5]. To
this end we suppose that the domain Ω is de-
composed into macroelements not necessarily
disjoints and define MQs

h ⊂ L2(Ω) quadrilat-
eral lagrangian finite element spaces of piece-
wise polynomial of degree s on each element
and class C0 in each macroelement but discon-
tinuous on the macroelement boundaries.

Considering Zh = MQs
h ×MQs

h, the follow-
ing residual form for the problem of retriev-
ing a better estimate for the velocity field is
introduced PROBLEMS MEh Given ph ∈ Vh

solution of PROBLEM Ph, find v∗h ∈ Zh =
MQs

h ×MQs
h, such that

(
v∗h +

i

ωρ
∇ph,uh

)

h

+

δ1h
2

(
∇ · v∗h +

iω

ρc2
ph,∇ · uh

)
+

δ2h
2(∇× v∗h,∇× uh) = 0 ∀ uh ∈ Zh

(13)
where v∗h is the post-processed velocity and a
more compact notation was adopted, in which
(., .) represents the L2 product and (., .)h de-
notes that this term is evaluated by suitable
integration rule, taking into account the super-
convergence of the derivatives. Besides, ∇. and
∇× stand for the divergence and rotational op-
erators. The scalars δ1 and δ2 are positive real
parameters, that might be adjusted in order to
have better convergence performance, and h is
the mesh parameter. The above variational for-
mulation is formed by three terms, namely: the
first one is associate to the constitutive relation-



ship between pressure and velocity evaluated
in superconvergent points and the last two are
derived from least-squares residuals of the con-
tinuity equation and the irrotationality condi-
tion, respectively.

3.2 Gradient Computation: the
adjoint problem

The optimization algorithm (12) requires the
evaluation of the Lagrangian’s gradient at each
iteration, which consists on the more complex
step of the numerical procedure. There are
different ways of obtaining this gradient de-
tailed in [9]. Here, an adjoint formulation is
adopted. It starts by introducing the the direc-
tional derivative DδP0L(P0) formally detailed
bellow:

DδP0L(P0) =

∫

ΓM

(−2) (vM − v∗h) · (v̆∗h) dΓ+
∫
Ω

λ.(∇2p̆h + k2p̆h) dΩ
(14)

where v̆ e p̆,often referred to as sensitivities,
are defined through

p̆h(x, P0; δP0) =
d

dη
ph(x, P0 + ηδP0)

∣∣∣∣
η=0

(15)

and

v̆∗h =
∂v∗h
∂ph

p̆h (16)

where the operator
∂v∗h
∂ph

will be detailed later.

As, from the computational standpoint, obtain-
ing those sensibilities is very expensive, the fol-
lowing alternative is introduced. Applying in-
tegration by parts, equation (14) is rewritten
and reads as:

DδP0L(P0) =

∫

ΓM

(−2)(vM − v∗h) · v̆∗h dΓ+
∫
Γ
λ · (∇p̆h · n)dΓ− ∫

Γ
(∇λ · n) · p̆dΓ+∫

Ω
(∇2λ + k2λ) · p̆dΩ

(17)

Dividing the integrals over the boundary Γ
through the partition:

∫
Γ

=
∫
Γp

+
∫
ΓM

yields

DδP0L(P0) =

∫

ΓM

(−2)(vM − v∗h) · v̆∗h dΓ+

∫
Γp

λ · (∇p̆h · n)dΓ +
∫

ΓM
λ · (∇p̆h · n)dΓ−

∫

Γp

(∇λ · n)p̆hdΓ−
∫

ΓM

(∇λ · n) · p̆hdΓ+
∫
Ω
(∇2λ + k2λ) · p̆hdΩ

(18)
Introducing the adjoint problem defined below




∇2λ + k2λ = 0 em Ω
λ = 0 x ∈ Γf

∇λ · n = (vM − v∗h) ·
(
−2

∂v∗h
∂ph

)
x ∈ ΓM

(19)
and applying the boundary conditions of the
problem, the directional derivative is thus given
by

DδP0L(P0) = −
∫

Γp

(∇λ · n) · p̆hdΓ (20)

Therefore, the gradient computation is reduced,
for each direction δP0, to an integration over
the boundary Γp involving the pressure sensitiv-
ity, which for that region is trivially computed,
and the lagrange multiplier obtained through
the solution of (19).

For solving (19), one needs the velocity sensi-
tivity over ΓM which is obtained with the aid of
the post-processing equation, given rise to the
following local auxiliary problem

bh(
∂v∗h
∂ph

,uh) =
∂F (ph,uh)

∂ph

∀uh (21)

where bh stands for the finite element operator
defined from the post-processing and F (ph,uh)
is given by:

F (ph,uh) = −
(

i

wρ
∇ph, uh

)
−δ1h

2

(
iw

ρc2
ph,∇ · uh

)

(22)

4 Duct 1D: model problem
for source identification

The performance of the proposed approach
is assessed through a problem involving a sim-
ple geometry that reproduces in essence the



Impedance

L

P0

x

Figure 1: Duct geometry, boundary conditions
and typical mesh

δ′s pr pi
||ql+1 − ql||
||ql − ql−1||

0, 001 2, 000 1, 14× 10−5 0, 84
0, 1 2, 004 −7, 52× 10−4 0, 89
0, 25 2, 006 −1, 13× 10−2 0, 91
1, 0 2, 008 −1, 59× 10−2 0, 94
10 2, 009 −1, 69× 10−2 0, 95
100 2, 009 −1, 71× 10−2 0, 94
1000 2, 009 −1, 71× 10−2 0, 87

Table 1: Variations of the parameter δ for an
estimative of error

sound propagation in an one-dimensional duct,
see Figure (1) for details. In the present test,
experiments are substituted by simulations, so
the measured data is obtained by solving the di-
rect problem for a prescribed source (constant
over Γp with real and imaginary components
equal to, respectively, 2 and 0), which for the
identification procedure is assumed not known.
In the duct’s right extremity, x = L, sensors
aiming at measuring the velocity are placed co-
inciding with the three nodal points of the mesh
presented in Figure (1), for which h = 0, 1m.

The iterative procedure is illustrated by the
scheme (2).

The first analysis which was carried out refers
to varying the post-processing parameters δ′s
using the same initial estimate (real component
of the pressure (pr) equals to 6 and the imagi-
nary one (pi) equals to -3), with the purpose of
evaluating the convergence rate and precision
of the results by using the proposed enhanced
finite element formulation. Those results are
summarized in Table 1 for different values of
δ′s with δ = δ1 = δ2. Fixing the optimization
step α = 1 a quasi linear convergence rate was
achieved.

A summary of the convergence history is pro-
vided by figures 3, 4, and 5.

Aiming at testing the robustness of the pro-
posed formulation, several different values for

Initial estimative

Calculation of the pressure field

Calculation of the velocity field

Stop criterion STOP

YES

Calculation of the Lagrange
parameter

Calculation of the direction descent

Update source

NO

Figure 2: Schematic view of the proposed algo-
rithm



Real pressure distribution considering
the initial estimate

-6.5351E+00
-4.7444E+00
-2.9536E+00
-1.1629E+00
 6.2781E-01
 2.4185E+00
 4.2093E+00
 6.0000E+00

Real pressure distribution after
the optimization process

-6.5351E+00
-4.7444E+00
-2.9536E+00
-1.1629E+00
 6.2781E-01
 2.4185E+00
 4.2093E+00
 6.0000E+00

Actual real pressure distribution

-6.5351E+00
-4.7444E+00
-2.9536E+00
-1.1629E+00
 6.2781E-01
 2.4185E+00
 4.2093E+00
 6.0000E+00

Figure 3: Real pressure distribution along the
duct

Imaginary pressure distribution considering
the initial estimate

-6.6272E+00
-4.7481E+00
-2.8690E+00
-9.8993E-01
 8.8917E-01
 2.7683E+00
 4.6474E+00
 6.5265E+00

Imaginary pressure distribution after
the optimization process

-6.6272E+00
-4.7481E+00
-2.8690E+00
-9.8993E-01
 8.8917E-01
 2.7683E+00
 4.6474E+00
 6.5265E+00

Actual imaginary pressure distribution

-6.6272E+00
-4.7481E+00
-2.8690E+00
-9.8993E-01
 8.8917E-01
 2.7683E+00
 4.6474E+00
 6.5265E+00

Figure 4: Imaginary pressure distribution along
the duct
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Figure 5: History of the optimization process,
h = 0.1m, k = 5, δ = 0.001

the initial estimative were taken. Tables 2 and
3 furnish the final results. It is important to
note that good estimations of the noise source
were obtained independently of the initial es-
timate, confirming the robustness of the pro-
posed formulation.

The convergence was reached, for all cases,
with a relatively low number of iterations. Fig-
ure (6) contains the evolution of the objective
function along the iterative process.

In order to stress the difficulties involving the
estimation of the noise source, the initial esti-
mates were assumed not constant over Γp. In
all situations presented in Table 4, the iterative
procedure ended leading to incorrect values of
the source strength. The obtained results rep-
resent local minima of the formulation which
surely requires a refinement on the optimiza-
tion algorithm.

Motivated by the situation described in the
previous paragraph, further tests were carried
out in order to ensure the enhancement pro-
vided by the post-processing to the source esti-
mation problem.

The inverse problem was formulated without
the participation of the post-processing given
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Figure 6: History of the optimization process,
h = 0.1m, k = 5

pi
r pi

i pf
r pf

i

−0, 001 10 2, 006 −1, 14× 10−2

−2, 0 1, 0 2, 006 −1, 14× 10−2

−10, 0 5, 0 2, 006 −1, 14× 10−2

6, 0 −3, 0 2.006 −1, 13× 10−2

17, 0 −10, 0 2, 006 −1, 13× 10−2

−150, 0 −70, 0 2, 006 −1, 13× 10−2

200, 0 100, 0 2, 006 −1, 14× 10−2

−1000, 0 −1000, 0 2, 006 −1, 13× 10−2

Table 2: Variations of the initial estimative of
the pressure field, δ = 0, 25

by the equation 13, in other words, to the
parameters δ′s are attributed values zero and
the term (.)h was fully integrated, not taking
into account the superconvergence behavior. In
brief, an L2(Ω) regularization in adopted.

When comparing the two formulations, in
other words, a formulation based on the post-
processing and the other based on the regular-
ization in L2(Ω), for the same initial guesses
,it is noticed through the results shown in the
tables 3 and 5 that the former furnishes bet-
ter results. The computational cost was also
an advantage, as the needed number of itera-
tions was less for the post-processing formula-
tion. Several other tests were accomplished and
it can be said that the proposed formulation is
a promising tool for the target applications.

pi
r pi

i pf
r pf

imag

−0, 001 10 2, 000 −1, 69× 10−5

−2, 0 1, 0 2, 000 −4, 38× 10−6

−10, 0 5, 0 2, 000 −1, 23× 10−6

17, 0 −10, 0 2, 000 3, 43× 10−6

−150, 0 −70, 0 2, 000 1, 89× 10−5

200, 0 100, 0 2, 000 −2, 14× 10−5

−1000, 0 −1000, 0 2, 000 −1, 33× 10−5

Table 3: Variations of the initial estimative of
the pressure field, δ = 0, 001

pinicial
real pinicial

imag pfinal
real pfinal

imag

0, 01 0.00 1.96 −2, 55× 10−2

0, 10 0.05 2.04 2, 49× 10−2

0, 01 0.00 1.96 −2, 55× 10−2

0, 01 −0, 1 1, 99 −5, 00× 10−2

0, 02 −0.05 2.00 −2, 15× 10−6

0, 03 0.00 2.01 4, 99× 10−2

−1, 00 0, 50 1, 80 9.99× 10−2

−0, 10 0.05 2.70 −3, 50× 10−1

−2, 00 1.00 0.80 6, 00× 10−1

3, 00 1, 00 1, 00 −1, 00× 100

4, 00 2.00 2.00 −1, 92× 10−6

5, 00 3.00 3.00 −2, 55× 10−2

10, 00 5, 00 17, 00 7, 50× 100

−20, 00 −10.00 −13.00 −7, 50× 100

10, 00 5.00 17.00 7, 50× 100

Table 4: Variations of the initial estimative of
the pressure field, δ = 0, 001

pinicial
real pinicial

imag pfinal
real pfinal

imag

−0, 001 10 1, 975 −2, 59× 10−1

−2, 0 1, 0 1, 975 −2, 59× 10−1

−10, 0 5, 0 1, 975 −2, 59× 10−1

6, 0 −3, 0 1, 975 −2, 59× 10−1

17, 0 −10, 0 1, 975 −2, 59× 10−1

−150, 0 −70, 0 1, 975 −2, 59× 10−1

200, 0 100, 0 1, 975 −2, 59× 10−1

−1000, 0 −1000, 0 1, 975 −2, 59× 10−1

Table 5: Variations of the estimative intial of
the pressure field, alternative formulation (reg-
ularization in L2(Ω))



5 Final Remarks

The more important contribution of the
present work relies on the use of an finite ele-
ment enhanced formulation for obtaining the
acoustic velocity field, which, in turn, provides
the basis for an inverse problem aiming at the
estimation of noise sources.
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